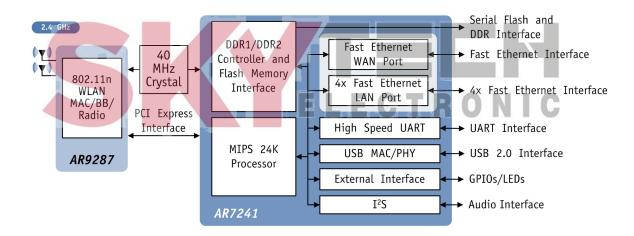


PRELIMINARY November 2009

# **AR7241: A High Performance And Cost-Effective Network Processor**

## **General Description**

The Atheros AR7241 is a high performance and cost effective network processor for access point, router, and gateway applications. It includes a MIPS 24K processor, PCI Express host interface, integrated 802.3 Ethernet Switch with five 10/100 Mbps Fast Ethernet MAC/PHY, one USB 2.0 MAC/PHY, and external memory interface for serial Flash, DDR1 or DDR2 interface, an I<sup>2</sup>S audio interface, a high-speed UART, and GPIOs that can be used for LED controls or other general purpose interface configurations.


The AR7241 is a memory-centric architecture including various DMA controlled interfaces that access the DDR memory.

The AR7241 network processor, when paired with the AR9287 single chip 802.11n MAC/BB/Radio family, provides the best-in-class WLAN solution capable of supporting 802.11b/g/n standards.

## **Features**

- Integrated MIPS 24 K 32-bit processor operating at up to 400 MHz
- 64 K instruction cache and 32 K data cache
- Integrated Ethernet Switch with four 10/ 100 802.3 Ethernet LAN ports and one WAN port
- 16-bit DDR1 or DDR2 memory interface supporting up to 400 M transfers per second
- An external serial Flash memory interface (maximum 16 MBytes)
- One USB 2.0 controller with built-in MAC/ PHY support
- High-speed UART and multiple GPIO pins for general purpose I/O or LED control
- A single lane PCI Express 1.1 interface that can be used for interfacing to the AR9287 single chip 802.11n MAC/BB/Radio
- JTAG port support for processor core
- 14 mm x 14 mm 128-pin LQFP lead-free package

## System Block Diagram



COMPANY CONFIDENTIAL • 1

<sup>© 2009</sup> by Atheros Communications, Inc. All rights reserved. Atheros®, Atheros Driven®, Atheros XR®, Driving the Wireless Future®, ROCm®, Super A/G®, Super G®, Super N®, Total 802.11®, XSPAN®, Wireless Future. Unleashed Now.®, and Wake on Wireless® are registered by Atheros Communications, Inc. Atheros SST™, Signal-Sustain Technology™, the Air is Cleaner at 5-GHz™, and 5-UP™ are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. All other trademarks are the property of their respective holders. Subject to change without notice.



## **Table of Contents**

| General Description                   |     |
|---------------------------------------|-----|
| Features                              |     |
| System Block Diagram                  | 1   |
| 1 Pin Descriptions                    | 5   |
| 2 System Architecture                 | 15  |
| 2.1 MIPS Processor                    |     |
| 2.2 Configuration                     |     |
| 2.3 AR7241 Address MAP                | 17  |
| 2.4 AHB Master Bus                    |     |
| 2.5 APB Bridge                        | 17  |
| 2.6 DDR Memory Controller             | 17  |
| 2.7 Serial Flash (SPI)                | 18  |
| 2.8 UART                              | 18  |
| 2.9 GE0 and GE1                       | 19  |
| 2.10 MDC/MDIO Interface               |     |
| 2.11 Ethernet Switch Controller       | 20  |
| 2.11.1 VLANs For LAN Ports            | 22  |
| 2.11.2 Quality of Service (QoS) For I | LAN |
| Ports                                 | 23  |
| 2.12 Rate Limiting                    | 23  |
| 2.13 Broadcast Storm Control          | 24  |
| 2.14 Switch Operation                 | 24  |
| 2.15 Port Mirroring                   | 24  |
| 2.16 Port States                      |     |
| 3 Audio Interface                     | 25  |
| 3.1 Overview                          | 25  |
| 3.2 Audio PLL                         |     |
| 3.3 I <sup>2</sup> S Interface        |     |
| 3.3.1 External DAC                    | 1// |
| 3.3.2 Sample Sizes and Rates          |     |
| 3.3.3 Stereo Software Interface       |     |
| 3.4 SPDIF INTERFACE                   | 26  |
| 3.5 MAILBOX (DMA CONTROLLER)          | 27  |
| 3.5.1 Mailboxes                       |     |
| 3.5.2 MBOX DMA Operation              |     |
| 3.5.3 Software Flow Control           |     |
| 3.5.4 Mailbox Error Conditions        | 28  |
| 3.5.5 MBOX-Specific Interrupts        | 28  |
| = *                                   |     |

| 4.1 | Absolute Maximum Ratings2                 | 9 |
|-----|-------------------------------------------|---|
| 4.2 | Recommended Operating Conditions 2        | 9 |
| 4.3 | General DC Electrical Characteristics . 3 | 0 |
| 4.4 | 40 MHz Clock Characteristics 3            | 2 |
| 4.5 | Power Consumption3                        | 3 |
| 5   | Package Dimensions3                       | 5 |
| 6   | Ordering Information3                     | 7 |



4 Electrical Characteristics ........... 29



## 1. Pin Descriptions

This section contains a package pinout (see Figure 1-1 and Table 1-2) and a tabular listing of the signal descriptions.

This nomenclature is used for signal names:

| NC | No connection should be made to |
|----|---------------------------------|
|    | this pin                        |

- $_{L}$ At the end of the signal name, indicates active low signals
- P At the end of the signal name, indicates the positive side of a differential signal
- At the end of the signal name N indicates the negative side of a differential signal

This nomenclature is used for signal types:

- Ι Digital input signal
- I/O A digital bidirectional signal
- IΑ Analog input signal
- IA/OA Analog bidirectional signal
  - ΙH Input signals with weak internal pull-up, to prevent signals from floating when left open
  - IL Input signals with weak internal pull-down, to prevent signals from floating when left open
  - O A digital output signal
  - OA An analog output signal
  - OD A digital output signal with open drain
  - Р A power or ground signal



Figure 1-1 shows the LQFP-128 AR7241 pinout.

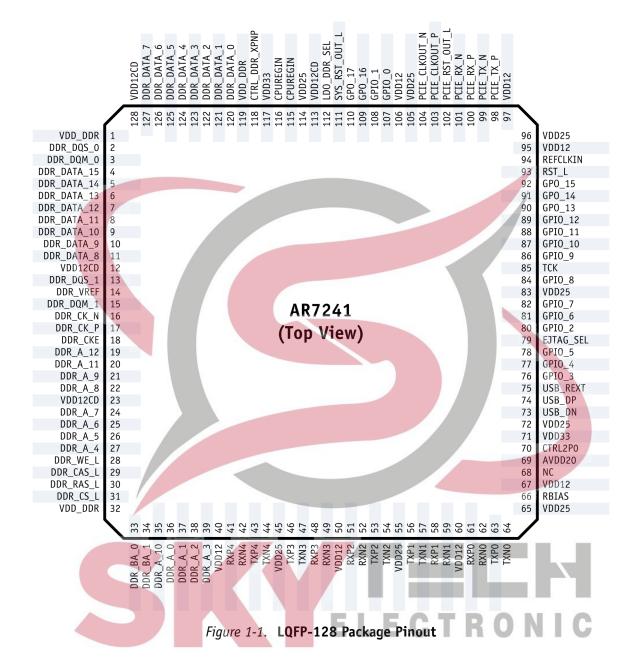



Table 1-1 shows the multiplexed pins for the AR7241,

Table 1-1. Multiplexed Pins<sup>[1][2]</sup>

| LQFP-128 |          |                                      |                |                            |                       |                       |
|----------|----------|--------------------------------------|----------------|----------------------------|-----------------------|-----------------------|
| Pin      | GPIO Pin | EJTAG Pin                            | LED Pin        | SPDIF/I <sup>2</sup> S Pin | SPI Pin               | UART Pin              |
| 107      | GPIO_0   |                                      |                | I2S_WS (FN2, 4)            | SPI_CS_1<br>(FN1, 14) |                       |
| 108      | GPIO_1   |                                      |                | I2S_CK (FN2, 3)            | SPI_CS_2<br>(FN1, 13) |                       |
| 80       | GPIO_2   |                                      |                |                            | SPI_CS_0<br>(FN1, 18) |                       |
| 76       | GPIO_3   |                                      |                |                            | SPI_CLK<br>(FN1, 18)  |                       |
| 77       | GPIO_4   |                                      |                |                            | SPI_MOSI<br>(FN1, 18) |                       |
| 78       | GPIO_5   |                                      |                |                            | SPI_MISO<br>(FN1, 18) |                       |
| 81       | GPIO_6   | TDI <sup>[3]</sup> (FN1, 0)          |                | I2S_CK (FN1, 26)           |                       |                       |
| 82       | GPIO_7   | TDO <sup>[3]</sup> (FN1, 0)          |                | I2S_WS (FN1, 26)           |                       |                       |
| 84       | GPIO_8   | TMS <sup>[3]</sup> (FN1, 0)          |                | I2S_SD (FN1, 26)           |                       |                       |
| 86       | GPIO_9   |                                      |                |                            |                       | UART_SIN<br>(FN1, 1)  |
| 87       | GPIO_10  |                                      |                |                            |                       | UART_SOUT<br>(FN1, 1) |
| 88       | GPIO_11  |                                      |                | I2S_MCK<br>(FN1, 26, 27)   |                       | UART_RTS<br>(FN1, 2)  |
|          | GPIO_12  |                                      |                | I2S_MICIN (FN1, 26)        |                       | UART_CTS              |
| 89       |          |                                      |                | I2S_SD (FN2, 5)            |                       | (FN1, 2)              |
| 90       | GPO_13   |                                      | LED_0 (FN1, 3) | SPDIF_OUT<br>(FN1, 30)     |                       | _                     |
| 91       | GPO_14   |                                      | LED_1 (FN1, 4) | I2S_SD (FN2, 1)            |                       |                       |
| 92       | GPO_15   |                                      | LED_2 (FN1, 5) | I2S_WS (FN2, 1)            |                       |                       |
| 109      | GPO_16   |                                      | LED_3 (FN1, 6) | I2S_CK (FN2, 1)            |                       |                       |
| 110      | GPO_17   |                                      | LED_4 (FN1, 7) | ECTR                       | ON                    | C                     |
| 85       | GPIO_18  | TCK <sup>[3]</sup> (FN1, 0)          |                | SPDIF_OUT<br>(FN1, 30, 31) |                       |                       |
| 79       | GPIO_19  | EJTAG_SEL <sup>[3]</sup><br>(FN1, 0) |                |                            |                       |                       |

<sup>[1]</sup> Multiplexing of the GPIO pins is controlled by the registers "GPIO Function (GPIO\_FUNCTION\_1)" on page 50 and "Extended GPIO Function Control (GPIO\_FUNCTION\_2)" on page 51.

<sup>[2]</sup>Notations of (FNx, y) indicate that the pin is controlled by the particular register and bit. For example, (FN1, 30, 31) indicates the "GPIO Function (GPIO\_FUNCTION\_1)" register, bit [30] and bit [31], and (FN2, 1) indicates the "Extended GPIO Function Control (GPIO\_FUNCTION\_2)" register, bit [1].

<sup>[3]</sup> The EJTAG interface is enabled by default. To use the EJTAG interface as GPIO pins, the JTAG\_DISABLE bit in the "GPIO Function (GPIO\_FUNCTION\_1)" register must be set to 1.

Table 1-2. Signal-to-Pin Relationships and Descriptions

|                         | LQFP-128 |       |                                                                                                                                                                                                                                                                               |  |
|-------------------------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Symbol                  | Pin      | Type  | Description                                                                                                                                                                                                                                                                   |  |
| Reset and Clock         |          |       |                                                                                                                                                                                                                                                                               |  |
| REFCLKIN                | 94       | I     | 40 MHz reference clock input, AC coupled, can be sine wave or square wave. An external 100 pF capacitor should connect between REFCLKIN and the clock source. See Table 4-7 and Table 4-8 on page 32 for more information.                                                    |  |
| RST_L                   | 93       | IH    | Power on reset with internal weak pull-up. Refer to reference design schematics                                                                                                                                                                                               |  |
| SYS_RST_OUT_L           | 111      | OD    | System reset out, open drain, pull up is required                                                                                                                                                                                                                             |  |
| PCI Express             |          |       |                                                                                                                                                                                                                                                                               |  |
| PCIE_CLKOUT_N           | 104      | OA    | Differential reference clock (100 MHz)                                                                                                                                                                                                                                        |  |
| PCIE_CLKOUT_P           | 103      | OA    |                                                                                                                                                                                                                                                                               |  |
| PCIE_RST_OUT_L          | 102      | OD    | PCI Express reset, open drain                                                                                                                                                                                                                                                 |  |
| PCIE_RX_N               | 101      | IA    | Differential receive                                                                                                                                                                                                                                                          |  |
| PCIE_RX_P               | 100      | IA    |                                                                                                                                                                                                                                                                               |  |
| PCIE_TX_N               | 99       | OA    | Differential transmit                                                                                                                                                                                                                                                         |  |
| PCIE_TX_P               | 98       | OA    |                                                                                                                                                                                                                                                                               |  |
| Serial Interface        |          |       |                                                                                                                                                                                                                                                                               |  |
| SPI_CLK <sup>[1]</sup>  | 76       | О     | Serial interface clock                                                                                                                                                                                                                                                        |  |
| SPI_CS_0 <sup>[1]</sup> | 80       | 0     | SPI chip select                                                                                                                                                                                                                                                               |  |
| SPI_CS_1 <sup>[1]</sup> | 107      | 0     |                                                                                                                                                                                                                                                                               |  |
| SPI_CS_2 <sup>[1]</sup> | 108      | 0     |                                                                                                                                                                                                                                                                               |  |
| SPI_MOSI <sup>[1]</sup> | 77       | 0     | Data transmission from the AR7241 to an external device. On reset, SPI_MISO (GPIO_5) is input and SPI_MOSI (GPIO_4) is output so it can directly interface with a SPI device such as a serial flash. If a serial flash is not used, these pins may be used as GPIO pins.      |  |
| SPI_MISO <sup>[1]</sup> | 78       | IL    | Data transmission from an external device to the AR7241. On reset, SPI_MISO (GPIO_5) is input and SPI_MOSI (GPIO_4) is output so that it can directly interface with a SPI device such as a serial flash. If a serial flash is not used, these pins may be used as GPIO pins. |  |
| USB                     |          |       |                                                                                                                                                                                                                                                                               |  |
| USB_DM                  | 73       | IA/OA | USB 2.0 D- data pin                                                                                                                                                                                                                                                           |  |
| USB_DP                  | 74       | IA/OA | USB 2.0 D+ data pin                                                                                                                                                                                                                                                           |  |
| USB_REXT                | 75       | IA/OA | Connect to external $6.04~\mathrm{K}\Omega$ resistor                                                                                                                                                                                                                          |  |
| UART                    |          |       |                                                                                                                                                                                                                                                                               |  |
| UART_CTS <sup>[1]</sup> | 89       | I     | UART clear to send signal                                                                                                                                                                                                                                                     |  |
| UART_RTS <sup>[1]</sup> | 88       | О     | UART ready to send signal (optional UART interface pin)                                                                                                                                                                                                                       |  |
| UART_SIN <sup>[1]</sup> | 86       | I     | Serial data in                                                                                                                                                                                                                                                                |  |

*Table 1-2.* Signal-to-Pin Relationships and Descriptions (continued)

|                          | LQFP-128 |      |                                                   |
|--------------------------|----------|------|---------------------------------------------------|
| Symbol                   | Pin      | Type | Description                                       |
| UART_SOUT <sup>[1]</sup> | 87       | О    | Serial data out                                   |
| DDR                      |          |      |                                                   |
| DDR_BA_0                 | 33       | О    | DDR bank address                                  |
| DDR_BA_1                 | 34       | О    |                                                   |
| DDR_CS_L                 | 31       | О    | DDR chip select                                   |
| DDR_CK_N                 | 16       | О    | DDR clock                                         |
| DDR_CK_P                 | 17       | 0    |                                                   |
| DDR_CKE                  | 18       | 0    | DDR clock enable                                  |
| DDR_DQM_0                | 3        | 0    | DDR data mask                                     |
| DDR_DQM_1                | 15       | 0    |                                                   |
| DDR_DQS_0                | 2        | I/O  | DDR data strobe                                   |
| DDR_DQS_1                | 13       | I/O  | In DDR2, both polarity signals need to be driven. |
| DDR_CAS_L                | 29       | 0    | DDR column address strobe                         |
| DDR_RAS_L                | 30       | 0    | DDR row address strobe                            |
| DDR_WE_L                 | 28       | 0    | DDR write enable                                  |
| DDR_VREF                 | 14       | I    | DDR reference level for SSTL signals              |
| DDR_A_0                  | 36       | 0    | DDR address                                       |
| DDR_A_1                  | 37       | 0    |                                                   |
| DDR_A_2                  | 38       | 0    |                                                   |
| DDR_A_3                  | 39       | 0    |                                                   |
| DDR_A_4                  | 27       | 0    |                                                   |
| DDR_A_5                  | 26       | 0    |                                                   |
| DDR_A_6                  | 25       | О    |                                                   |
| DDR_A_7                  | 24       | 0    |                                                   |
| DDR_A_8                  | 22       | 0    |                                                   |
| DDR_A_9                  | 21       | 0    |                                                   |
| DDR_A_10                 | 35       | 0    | FIFOTDONIO                                        |
| DDR_A_11                 | 20       | 0    | ELECTRONIC                                        |
| DDR_A_12                 | 19       | O    |                                                   |

Table 1-2. Signal-to-Pin Relationships and Descriptions (continued)

| Symbol               | LQFP-128<br>Pin | Туре | Description                                                                              |
|----------------------|-----------------|------|------------------------------------------------------------------------------------------|
| DDR_DATA_0           | 120             | I/O  | DDR data bus                                                                             |
| DDR_DATA_1           | 121             | I/O  |                                                                                          |
| DDR_DATA_2           | 122             | I/O  |                                                                                          |
| DDR_DATA_3           | 123             | I/O  |                                                                                          |
| DDR_DATA_4           | 124             | I/O  |                                                                                          |
| DDR_DATA_5           | 125             | I/O  |                                                                                          |
| DDR_DATA_6           | 126             | I/O  |                                                                                          |
| DDR_DATA_7           | 127             | I/O  |                                                                                          |
| DDR_DATA_8           | 11              | I/O  |                                                                                          |
| DDR_DATA_9           | 10              | I/O  |                                                                                          |
| DDR_DATA_10          | 9               | I/O  |                                                                                          |
| DDR_DATA_11          | 8               | I/O  |                                                                                          |
| DDR_DATA_12          | 7               | I/O  |                                                                                          |
| DDR_DATA_13          | 6               | I/O  |                                                                                          |
| DDR_DATA_14          | 5               | I/O  |                                                                                          |
| DDR_DATA_15          | 4               | I/O  |                                                                                          |
| LED                  |                 |      |                                                                                          |
| LED_0 <sup>[1]</sup> | 90              | OD   | If ETH_SWITCH_LED0_EN is set, it becomes open drain and provides drive strength of 10 mA |
| LED_1 <sup>[1]</sup> | 91              | OD   | If ETH_SWITCH_LED1_EN is set, it becomes open drain and provides drive strength of 10 mA |
| LED_2 <sup>[1]</sup> | 92              | OD   | If ETH_SWITCH_LED2_EN is set, it becomes open drain and provides drive strength of 10 mA |
| LED_3 <sup>[1]</sup> | 109             | OD   | If ETH_SWITCH_LED3_EN is set, it becomes open drain and provides drive strength of 10 mA |
| LED_4 <sup>[1]</sup> | 110             | OD   | If ETH_SWITCH_LED4_EN is set, it becomes open drain and provides drive strength of 10 mA |

ELECTRONIC

*Table 1-2.* Signal-to-Pin Relationships and Descriptions (continued)

| Symbol             | LQFP-128<br>Pin | Туре  | Description                           |
|--------------------|-----------------|-------|---------------------------------------|
| JTAG               |                 |       | · ·                                   |
| EJTAG_SEL          | 79              | I     | 0 JTAG                                |
|                    |                 |       | 1 EJTAG (enhanced JTAG)               |
| TCK <sup>[1]</sup> | 85              | I     | JTAG/EJTAG clock                      |
| TDI <sup>[1]</sup> | 81              | I     | JTAG/EJTAG data input                 |
| TDO <sup>[1]</sup> | 82              | 0     | JTAG/EJTAG data output                |
| TMS <sup>[1]</sup> | 84              | I     | JTAG/EJTAG mode select                |
| Ethernet           |                 |       |                                       |
| RBIAS              | 66              | OA    | Connect to 2.37 KΩ resistor to ground |
| RXN0               | 62              | IA/OA | Port 0                                |
| RXP0               | 61              | IA/OA |                                       |
| TXN0               | 64              | IA/OA |                                       |
| TXP0               | 63              | IA/OA |                                       |
| RXN1               | 59              | IA/OA | Port 1                                |
| RXP1               | 58              | IA/OA |                                       |
| TXN1               | 57              | IA/OA |                                       |
| TXP1               | 56              | IA/OA |                                       |
| RXN2               | 52              | IA/OA | Port 2                                |
| RXP2               | 51              | IA/OA |                                       |
| TXN2               | 54              | IA/OA |                                       |
| TXP2               | 53              | IA/OA |                                       |
| RXN3               | 49              | IA/OA | Port 3                                |
| RXP3               | 48              | IA/OA |                                       |
| TXN3               | 47              | IA/OA |                                       |
| TXP3               | 46              | IA/OA |                                       |
| RXN4               | 42              | IA/OA | Port 4                                |
| RXP4               | 41              | IA/OA | ELECTRONIC                            |
| TXN4               | 44              | IA/OA |                                       |
| TXP4               | 43              | IA/OA |                                       |

Table 1-2. Signal-to-Pin Relationships and Descriptions (continued)

| Symbol                    | LQFP-128<br>Pin | Туре | Description                                                     |  |
|---------------------------|-----------------|------|-----------------------------------------------------------------|--|
| GPIO GPIO                 | 1               | -36- |                                                                 |  |
| GPIO_0 <sup>[1]</sup>     | 107             | I/O  | General purpose input/output with drive strength of 2 mA.       |  |
| GPIO_1 <sup>[1]</sup>     | 108             | I/O  |                                                                 |  |
| GPIO_2 <sup>[1]</sup>     | 80              | I/O  |                                                                 |  |
| GPIO_3 <sup>[1]</sup>     | 76              | I/O  |                                                                 |  |
| GPIO_4 <sup>[1]</sup>     | 77              | I/O  |                                                                 |  |
| GPIO_5 <sup>[1]</sup>     | 78              | I/O  |                                                                 |  |
| <br>GPIO_6 <sup>[1]</sup> | 81              | I/O  | GPIO pin multiplexed as TDI by default                          |  |
| GPIO_7 <sup>[1]</sup>     | 82              | I/O  | GPIO pin multiplexed as TDO by default                          |  |
| GPIO_8 <sup>[1]</sup>     | 84              | I/O  | GPIO pin multiplexed as TMS by default                          |  |
| GPIO_9 <sup>[1]</sup>     | 86              | I/O  | General purpose input/output with drive strength of 2 mA.       |  |
| GPIO_10 <sup>[1]</sup>    | 87              | I/O  |                                                                 |  |
| GPIO_11 <sup>[1]</sup>    | 88              | I/O  |                                                                 |  |
| GPIO_12 <sup>[1]</sup>    | 89              | I/O  |                                                                 |  |
| GPO_13 <sup>[1]</sup>     | 90              | О    | These pins are intended for driving Ethernet LEDs and cannot be |  |
| GPO_14 <sup>[1]</sup>     | 91              | 0    | used as inputs. See the pin descriptions for "LED" on page 10.  |  |
| GPO_15 <sup>[1]</sup>     | 92              | 0    |                                                                 |  |
| GPO_16 <sup>[1]</sup>     | 109             | 0    |                                                                 |  |
| GPO_17 <sup>[1]</sup>     | 110             | 0    |                                                                 |  |
| GPIO_18 <sup>[1]</sup>    | 85              | I/O  | GPIO pin multiplexed as TCK by default                          |  |
| GPIO_19 <sup>[1]</sup>    | 79              | I/O  | GPIO pin multiplexed as EJTAG_SEL by default                    |  |
| I <sup>2</sup> S/SPDIF    |                 | 7    |                                                                 |  |
| I2S_CK <sup>[1]</sup>     | 81, 108,        | 0    | Stereo clock                                                    |  |
| I2S_MCK <sup>[1]</sup>    | 109             | 0    | Master clock LECTRONC                                           |  |
| I2S_MICIN <sup>[1]</sup>  | 89              | I    | Data input                                                      |  |
| I2S_SD <sup>[1]</sup>     | 84, 89, 91      | I/O  | Serial data input/output                                        |  |
| I2S_WS <sup>[1]</sup>     | 82, 92, 107     | 0    | Word select for stereo                                          |  |
| 120_770                   |                 |      | 0 Right                                                         |  |
|                           |                 |      | 1 Left                                                          |  |
| SPDIF_OUT <sup>[1]</sup>  | 85, 90          | О    | Speaker output                                                  |  |

<sup>[1]</sup>This pin is multiplexed. See Table 1-1.

| Symbol            | Pin                                 | Descr              | iption                                                                                                                                                                |  |
|-------------------|-------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Regulator Contro  | ol                                  |                    |                                                                                                                                                                       |  |
| CPUREGIN          | 115, 116                            | I                  | CPU regulator control inputs. Minimum voltage is 1.8 V. A 1 $\Omega$ resistor may be used in series between these pins and VDD_DDR pins in DDR1 mode (LDO_DDR_SEL=1). |  |
| CTRL_DDR<br>_XPNP | 118                                 | OA                 | External PNP Control. Connect to the base of an external PNP: collector to VDD_DDR and emitter to VDD33.                                                              |  |
| CTRL2P0           | 70                                  | OA                 | External PNP control. Connect to the base of an external PNP: collector to AVDD20 and emitter to VDD33.                                                               |  |
| LDO_DDR_SEL       | 112                                 | I                  | Selects the regulated DDR voltage, see VDD_DDR description                                                                                                            |  |
|                   |                                     |                    | 0 DDR2 voltage, 1.8 V                                                                                                                                                 |  |
|                   |                                     |                    | 1 DDR1 voltage, 2.6 V                                                                                                                                                 |  |
| Power             |                                     |                    |                                                                                                                                                                       |  |
| AVDD20            | 69                                  | Regula<br>collect  | ated 2.0 V from the AR7241; connect to the external PNP cor.                                                                                                          |  |
| VDD_DDR           | 1, 32, 119                          |                    | ated 2.6 V or 1.8 V output from the AR7241, for DDR1 or respectively. Connect to the external PNP collector.                                                          |  |
| VDD12             | 40, 50, 60, 67, 95, 97, 106         | Regula             | ated 1.2 V output from the AR7241                                                                                                                                     |  |
| VDD12CD           | 12, 23, 113, 128                    |                    | ated 1.28 V output from the AR7241; core voltage of CPU/<br>blocks, connect pins 12 and 23 to pins 113 and 128                                                        |  |
| VDD25             | 45, 55, 65, 72, 83, 96, 105,<br>114 | Regula             | ated 2.62 V output from the AR7241; I/O voltage                                                                                                                       |  |
| VDD33             | 71, 117                             | 3.3 V <sub>I</sub> | power supply                                                                                                                                                          |  |
| <b>Ground Pad</b> |                                     |                    |                                                                                                                                                                       |  |
| Exposed Ground    | Pad                                 | Tied to            | o GND (see "Package Dimensions" on page 36)                                                                                                                           |  |
| No Connection     |                                     |                    |                                                                                                                                                                       |  |
| NC                | 68                                  | No co              | nnection                                                                                                                                                              |  |
| S                 | SKATECH                             |                    |                                                                                                                                                                       |  |
|                   |                                     |                    | ELECTRONIC                                                                                                                                                            |  |





## 2. System Architecture

Figure 2-1 illustrates the AR7241 system architecture.

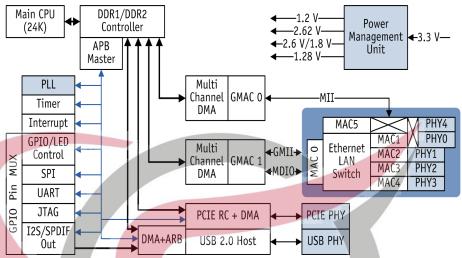



Figure 2-1. AR7241 Functional Block Diagram

Table 2-1 summarizes the functional blocks that comprise the AR7241.

Table 2-1. Functional Block Descriptions

| Block                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU                         | This MIPS 24 K processor can run up to 400 MHz. It includes a 64 K 4-way set associative instruction cache, 32 K 4-way set associative data cache, single cycle multiply-accumulate, and MIPS32 and MIPS16 instruction sets. Non-blocking cache reads are also supported.  See "MIPS Processor" on page 16.                                                                                                                                                                                  |
| DDR<br>Memory<br>Controller |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | See "DDR Memory Controller" on page 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ethernet<br>Switch/<br>GMAC | Four LAN ports and one WAN port with integrated PHY. LED indication for each port is supported. The four LAN ports connect to the CPU through the GE1 GMII interface, and four Tx queue priorities are supported in each LAN port. The WAN port connects to the CPU using the GE0 MII interface. The MII interface can support up to four priority queues, with either simple priority or a weighted round robin arbitration mechanism. Switch functions such as QoS and VLAN are supported. |
| Bus<br>Bridge               | High speed peripheral bus; the APB connects peripherals such as GPIO, UART, and SPI for Flash to the bus bridge. The AHB connects high-performance peripheral interfaces such as the GB Ethernet and USB interfaces to the bus bridge.  See "AHB Master Bus" on page 17 and "APB Bridge" on page 17.                                                                                                                                                                                         |
| GPIO                        | 20 multiplexed GPIO pins: 5 of which are output-only intended for driving LEDs, the others can be used for general purpose controls, SPI, I <sup>2</sup> S, SPDIF, and UART. See Table 1-1 on page 7 for GPIO multiplexing.                                                                                                                                                                                                                                                                  |

Table 2-1. Functional Block Descriptions (continued)

| I <sup>2</sup> S/ | AR7241 audio support consists of:                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDIF             | ■ I <sup>2</sup> S/SPDIF out audio interface that support up to 48 KHz sampling clock and a serial clock of more than 512 * sampling frequency. It also supports seamless switching of the audio out stream from I2S to SPDIF. I2S MIC is also supported.                                                                                                                                                                                                                         |
|                   | ■ A dedicated audio PLL to generate serial clock for various sampling frequencies.                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | See "Audio Interface" on page 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCIE              | The root complex single lane interface can support up to 2.56 Gbps and supports both the message-based and MSI interrupt mechanism.                                                                                                                                                                                                                                                                                                                                               |
| PLL               | The PLL block consists of six PLLs used to generate:  ■ A clock for CPU/DDR, tunable from 300 MHz to 450 MHz  ■ PLL for 48 MHz reference clock for the USB core and to generate a 25 MHz reference clock for the Ethernet Switch  ■ PCIE 100 MHz clocks with dither support  ■ PCIE PHY PLL generates 250 MHz and 2.5 GHz clock for the PCIE interface  ■ Ethernet 125 MHz clock generated from a 25 MHz clock  ■ PLL to generate the master clock for I <sup>2</sup> S/SPDIF out |
| SPI               | SPI interface that can be used for serial Flash.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UART              | 16650 equivalent UART for debug/console                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USB               | Universal Serial Bus 2.0 host interface support.                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 2.1 MIPS Processor

The AR7241 integrates an embedded MIPS 24Kc processor. For complete information on the 24Kc processor, visit:

http://www.mips.com/products/cores/32bit\_cores/MIPS32\_24K\_Family.php#

Under Processor Cores-24K Family, refer to:

- MIPS32 24Kc Processor Core Datasheet v3.04
- MIPS32 24Kc Processor Core Family Software User's Manual v3.05

Under EJTAG, refer to:

■ EJTAG Specification v2.60

## 2.2 Configuration

Table 2-2 summarizes the configuration settings used by the AR7241. Upon reset, the CPU puts out an address of 0xBFC00000 which is mapped to the flash address space.

The AR7241 processor supports a clock frequency of up to 400 MHz.



## **Table 2-2.** Core Processor Configuration Settings

| Setting          | Description                                                                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cache Size       | The AR7241 implements 64 KB 4-way set associative instruction cache and 32 KB four-way set associative data cache. It supports single cycle multiply-accumulate, MIPS32 and MIPS16 instruction sets and non-blocking cached reads. |
| Endian           | The AR7241 implements big Endian addressing.                                                                                                                                                                                       |
| Block Addressing | The AR7241 implements sequential ordering.                                                                                                                                                                                         |

#### 2.3 AR7241 Address MAP

The address space for the AR7241 is divided into two 256 MBytes (MB) regions. The lower region maps to the DDR memory. The upper region maps to the AHB bus bridge. The

512 MBytes decoded region is repeated through the 4 GBytes of the processor's address space. Figure 2-2 shows the address space allocation.

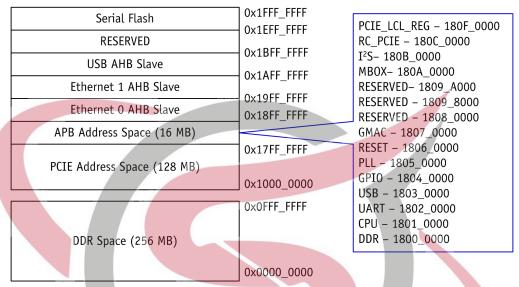



Figure 2-2. Address Space Allocation

### 2.4 AHB Master Bus

The 256 MByte region of address space for the AHB devices is divided into two major windows, 128 MByte for the PCIE and the remainder for the internal DDR AHB master interfaces such as APB, GE0, GE1, and serial flash.

#### 2.5 APB Bridge

One 16 MByte window of the AHB address space is devoted to an APB device mapper. The APB space contains the register address spaces of most of the interfaces, including PCIE, serial flash, GPIO, and UART. This space also provides access to the watchdog timer and four general purpose timers.

## 2.6 DDR Memory Controller

The AR7241 supports a 16-bit DDR1/DDR2 memory interface of up to 64 MBytes of memory in a single device. It supports one dedicated point-to-point interface for the CPU and similarly dedicated point-to-point interfaces for the CPU, USB, Ethernet and PCIE master devices. Write transactions are buffered at each interface. It implements separate arbitration for each bank thus allowing efficient pipelined RAS/CAS/precharge scheduling.

The DDR block has five AHB-slave interfaces for: GE0, GE1, USB, PCIE, and CPU. External DDR is powered by the AR7241 using an external power transistor. Depending on the LDO\_DDR\_SEL input, the AR7241 internal regulator generates VDD\_DDR output voltage to power the external DDR memory. Table 2-3 shows the LDO\_DDR\_SEL configurations.

Table 2-3. LDO\_DDR\_SEL Voltage Configuration

| LDO-DDR_SEL Input | DDR Voltage | Device Type |
|-------------------|-------------|-------------|
| 0                 | 1.8 V       | DDR2        |
| FCTD              | 2.6 V       | DDR1        |
|                   |             |             |

See Figure 4-1, "Output Voltages Regulated by the AR7241," on page 33.

Table 2-4 shows the DDR configurations.

Table 2-4. DDR Configurations

| Device Type/Total Cap. | <b>Device Count</b> | Device Type |
|------------------------|---------------------|-------------|
| 128 MB (8 M x 16)      | 1                   | DDR1        |
| 256 MB (16 M x 16)     | 1                   | DDR1        |
| 256 MB (16 M x 16)     | 1                   | DDR2        |
| 512 MB (32 M x 16)     | 1                   | DDR2        |

Table 2-5 shows the correspondence of the internal CPU address, the DDR interface address, and the physical memory address.

Table 2-5. Address Mapping

| CPU Address Bit | AR7241<br>DDR Interface Address | Corresponding 16-bit DDR<br>Memory Address <sup>[1]</sup> |
|-----------------|---------------------------------|-----------------------------------------------------------|
| 0               | DDR_A_0, Unused (x16 DRAM)      |                                                           |
| 1               | DDR_A_1                         | CAS0                                                      |
| 2               | DDR_A_2                         | CAS1                                                      |
| 3               | DDR_A_3                         | CAS2                                                      |
| 4               | DDR_A_4                         | CAS3                                                      |
| 5               | DDR_A_5                         | CAS4                                                      |
| 6               | DDR_A_6                         | CAS5                                                      |
| 7               | DDR_A_7                         | CAS6                                                      |
| 8               | DDR_A_8                         | CAS7                                                      |
| 9               | DDR_A_9                         | CAS8                                                      |
| 10              | DDR_A_0                         | RAS0                                                      |
| 11              | DDR_BA_0                        | BA0                                                       |
| 12              | DDR_BA_1                        | BA1                                                       |
| 13              | DDR_A_1                         | RAS1                                                      |
| 14              | DDR_A_2                         | RAS2                                                      |
| 15              | DDR_A_3                         | RAS3                                                      |
| 16              | DDR_A_4                         | RAS4                                                      |
| 17              | DDR_A_5                         | RAS5                                                      |
| 18              | DDR_A_6                         | RAS6                                                      |
| 19              | DDR_A_7                         | RAS7                                                      |
| 20              | DDR_A_8                         | RAS8                                                      |
| 21              | DDR_A_9                         | RAS9                                                      |
| 22              | DDR_A_10                        | RAS10                                                     |
| 23              | DDR_A_11                        | RAS11                                                     |
| 24              | DDR_A_12                        | RAS12                                                     |
| 25              | DDR_A_11                        | CAS9                                                      |
| 26              | DDR_A_12                        | CAS11                                                     |

[1]CAS10 is a precharge bit, typically 0.

## 2.7 Serial Flash (SPI)

The single SPI chip select is dedicated to an external flash to boot the chip. Two configurable chip selects are available to bitbang using GPIOs that configure external components. As an AHB slave, the SPI controller only supports word transactions. Because serial flash supports cached reads (but not cached writes) functionality, the CPU must perform uncached write, but a read can be accelerated by performing cached reads. By default, the REMAP\_DISABLE bit is zero

## ELECTRONIC

which only 4 MBytes are accessible. By setting this bit to 1, up to 16 MBytes of flash space can be accessed.

#### 2.8 *UART*

The AR7241 contains a single 16550 equivalent UART port for debug/console. The UART pins are multiplexed with GPIO pins, therefore the "GPIO Function (GPIO\_FUNCTION\_1)"

register bits control which GIPIO pins are used for UART functions.

#### 2.9 GEO and GE1

The AR7241 integrates two Gigabit Ethernet ports that are connected to the Ethernet Switch. The GE0 and GE1 support 2K transmit FIFO and 2K receive FIFO. The WAN port is a MII interface that connects directly to a PHY inside the Ethernet Switch. Another port connects to the Ethernet Switch using a GMII interface. Through the Ethernet Switch this port connects to the four LAN ports. See Figure 2-3.

The AR7241's WAN Ethernet PHY (PHY0) can connect directly to the switch as another port, or can be directly to the CPU through an MII interface.

The PHY interfaces (PHY0, PHY1, PHY2, PHY3 and PHY4) can connect to the switch in bridge mode. In this case GE0 must be under reset. All five LAN ports are switched together and connect to the CPU through the GMII interface (MAC0), which is controlled by the ETH\_CFG register bit SW\_ONLY\_MODE. If GEO connects separately to PHY, then MAC5 should be under reset.

The GMII and MII MAC interface to the Ethernet Switch support four Tx queues, each with its own descriptor chain. A priority of DMA\_TX\_Q0 is higher than DMA\_TX\_Q1 and so on. The DMA configuration registers are separate for each queue. Two arbitration mechanisms are supported: one is a simple priority and the other is a weighted round robin arbitration.

Similarly for rest of the queues. In case of Round robin arbitration on a long term the number of packets sent per queue is guaranteed to be in the ratio of the weights programmed. Weight of ZERO is prohibited. It should be noted that the weights are on a packet basis and not on the number of bytes transmitted on that queue. Moreover, a 19-bit free running counter (running on AHB\_CLK) value is updated on the descriptor field as shown below on both the transmit and receive descriptor. This update is done as part of the descriptor update that the MAC DMA core already does upon completion of transmit or receive. Software can track the latency on per packet basis using these descriptor Timestamp and the free timer register.

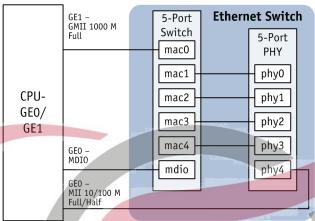
## 2.10 MDC/MDIO Interface

The MDC/MDIO interface, which is internal to the AR7241, allows users to access the internal registers of the switch. Table 2-6 shows the format required to access the MII registers in the embedded PHY. The PHY-address is from 0x00 to 0x04. The OP code 10 indicates the read command and 01 indicates the write command.

Table 2-6. MDC/MDIO Interface Format

| start | Ор | 2′b0 | Phy-addr | reg_addr | TA    | Data   |
|-------|----|------|----------|----------|-------|--------|
|       | •  |      | [2.0]    | [4:0]    | [1:0] | [15:0] |

The internal switch registers are 32 bits wide, but MDIO access is only 16 bits wide, so two access cycles are required to access all 32 bits of the internal registers. Address spacing is more than the MDIO-supported 10 bits, thus upper address bits must be written to the internal registers, similar to the page mode access method. For example, register address bits [18:9] are treated as a page address and written out first as High\_addr [9:0] (see Table 2-7). Then the register would be accessed via Table 2-6, where Low\_addr [7:1] is the register address bit [8:2] and Low\_addr [0] is 0 for Data [15:0] or Low\_addr [0] is 1 for Data [31:16].


Table 2-7. Initial Register Address Bits

| start | Op | 2'b11 | 8′b0 | 6′b0 | High_addr<br>[9:0] |
|-------|----|-------|------|------|--------------------|
|       |    |       |      |      |                    |



## 2.11 Ethernet Switch Controller

Figure 2-3 shows the Ethernet Switch block diagram.



Notes:

- 1. macO connects to the CPU port and only supports 1000M full duplex mode.
- 2. phy4 connects to the CPU directly and supports 10/100M full and half duplex.
- 3. The MDIO interface connects the Ethernet switch to the configuration register.

Figure 2-3. Ethernet Switch Block Diagram

The Ethernet Switch controller performs the majority of the switch functions of the AR7241. The controller contains five 10/100 Mbps Fast Ethernet ports, each containing four levels of Quality of Service, 802.1Q VLANs, port based VLANs and RMON statistic counters. The AR7241 integrates five 10/100 two speed Ethernet transceivers (PHYs) and one single port 10/100/1000 media access controllers (MAC) as well as a wire-speed, non-blocking shared memory switch fabric.

The included 1 KB entry address lookup table uses two entries per bucket to avoid hash collisions and maintain packet-forwarding performance. The address entry table provides read/write access from the serial and CPU interfaces where each entry can be configured as a static entry. 1024 MAC addresses are supported with automatic learning, aging and static address support. The Ethernet Switch also supports basic switch features including port mirroring, broadcast storm support, flow control in full-duplex, and back pressure in half duplex, 802.3 auto-negotiation, port locking, MIB counters, ingress and egress rate limitation, and automatic speed and duplex communication between PHYs and MACs.



Table 2-8 summarizes the AR7241 Ethernet Switch functions.

Table 2-8. Ethernet Switch

| Block                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Media Access<br>Controllers<br>(MAC) | The AR7241 integrates six independent fast Ethernet MACs that perform all functions in the IEEE 802.3 and IEEE 802.3u specifications, including frame formatting, frame stripping, CRC checking, CSMA/CD, collision handling, and back-pressure flow control, etc. Each MAC supports 10 Mbps or 100 Mbps operation in either full-duplex or half-duplex mode.                                                                                                           |
| Full-Duplex<br>Flow Control          | The AR7241 device supports IEEE 802.3x full-duplex flow control, force-mode full-duplex flow control, and half-duplex back pressure. If the link partner supports auto-negotiation, the 802.3x full-duplex flow control auto-negotiates between the remote node and the AR7241. If full-duplex flow control is enabled, when free buffer space is almost empty, the AR7241 sends out an IEEE 802.3x compliant PAUSE to stop the remote device from sending more frames. |
| Half-Duplex<br>Flow Control          | Half-duplex flow control regulates the remote station to avoid dropping packets during network congestion. A back pressure function is supported for half-duplex operations. When free buffer space is almost empty, the AR7241 device transmits a jam pattern on the port and forces a collision. If the half-duplex flow control mode is not set, the incoming packet is dropped if no buffer space is available.                                                     |
| Inter-Packet<br>Gap (IPG)            | The IPG is the idle time between any to successive packets from the same port. The typical IPG is 9.6 µs for 10 Mbps Ethernet and 960 µs for 100 Mbps Fast Ethernet.                                                                                                                                                                                                                                                                                                    |
| Port Locking                         | The AR7241 supports port locking. If one port is set for port locking, only received frames with the unicast source address found in the ARL table and do not have a member violation, can be sent out. Other blocked frames are dropped or redirected to the CPU port by the control register, LOCK_DROP_EN.                                                                                                                                                           |
| Frame<br>Forwarding<br>Prevention    | The AR7240 can be configured to prevent the forwarding of unicast or multicast frames that contain an unknown destination address. This can be accomplished on a per-port basis, so that frames with unknown addresses only go out to the port where a server or router is connected. Broadcast frames forwarded to the CPU port can also be prevented.                                                                                                                 |
| Illegal Frames                       | The AR7240 discards all illegal frames such as CRC error, oversized packets (length greater than maximum length), and runt packets (length less than 64 bytes).                                                                                                                                                                                                                                                                                                         |
| VLANs                                | See "VLANs For LAN Ports" on page 22.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| QoS                                  | See "Quality of Service (QoS) For LAN Ports" on page 23.                                                                                                                                                                                                                                                                                                                                                                                                                |



#### 2.11.1 VLANs For LAN Ports

The switch supports 16 IEEE 802.1Q VLANs and port-based VLAN functionality for all frames, including management frames when 802.1Q is enabled on the ingress port. Untagged frames conform to the port-based VLAN even if the ingress port has 802.1Q mode enabled. See Table 2-9.

Table 2-9. Ethernet Switch VLAN

| VLAN                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port-Based           | Each ingress port contains a register restricting the output (or egress) ports it can send frames to. This port-based VLAN register has a field called PORT_VID_MEM that contains the port based setting. If bit [0] of PORT_VID_MEM is set to one, the port is allowed to send frames to Port 0, bit [2] for Port 2, and so on. At reset, each port's PORT_VID_MEM is set to a value of all 1s, except for each port's own bit, which clears to zero. Note that the CPU port is port 0. |
| IEEE 802.1Q<br>VLANs | The AR7241 supports a maximum of 16 entries in the VLAN table. The device supports 4096 VLAN ID range from 0 to 4095. The AR7241 only supports shared VLAN learning (SVL). This means that forwarding decisions are based on the frame's destination MAC address, which should be unique among all VLANs.                                                                                                                                                                                |

Tagging and untagging egress frames is supported using 802.1Q VLANs, or statically using Port Based VLANs. Frames may go out from the switch in three methods:

- Transmit Unmodified Untagged frames egress a port untagged while tagged frames leave tagged.
- Transmit Untagged Untagged frames leave a port unmodified while tagged frames leave untagged.
- Transmit Tagged Tagged frames leave a port unmodified while an IEEE tag is added to untagged frames before leaving.

When a tag is added to an untagged frame, the frame inserts directly after the frame's source address and includes four bytes.

- The first byte is always 0x81.
- The second byte is always 0x00.
- PRI bits indicate frame priority determined by the source port's priority setting.
- The CFI bit is always set to 0.

VID bits indicate the VID assigned to the frame as determined in the source port default VID.

A tagged frame leaving a port tagged may have its VID bits modified. If the ingressing frame's VID was 0x000, the ingress port's default VID is assigned to the frame instead.

Double Tagging is a method of isolating one IEEE 802.1Q VLAN from other IEEE 802.1Q VLANs in a hierarchical fashion that is compatible with IEEE 802.1Q ready switches, as long as those switches support a maximum frame size of 1526 bytes or more. In this way, an extra, or double, tag is placed in front of a frame's normal tag thereby increasing the frame's size by four bytes.

Ingress double tagging can be selected on a port-by-port basis. Typically, any port that has ingress double tagging enabled will also have egress double tagging enabled. Ingress double tagging enabled ports expect all ingress frames to contain an extra tag that must be removed from the frame before performing the port's ingress policy on the frame. In this mode, the ingress policy removes the first IEEE 802.3ac tag that appears after the source address in every frame. If the untagged frame is not modified, all data from the removed tags is ignored by the switch.

## 2.11.2 Quality of Service (QoS) For LAN Ports

The AR7241 recognizes the QoS information of ingress frames and map to different egress priority levels. The AR7241 determines the priority of the frames based on DA, TOS/TC, VLAN, and port. Each has an enable bit that can be applied. When more than one type of priority is selected, the order in which the frame priority should be applied can be determined. Priority enable bits and select order bits are set by port base at 0x110 for port 0, 0x210 for port 1, and so on.

| Priority<br>Determined         | Description                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| DA                             | Set DA_PRI_EN bit [18] to 1 and add the address to the ARL table-set priority_over_en to 1. ARL priority bits [59:58] can be used as DA priority. |
| ToS/TC                         | Set IP_PRI_EN bit [16] to 1, and set the IP priority mapping register (0x60–0x6C).                                                                |
| VLAN                           | Set VLAN_PRI_EN (bit [17]) to 1, and set the TAG priority mapping register (0x70).                                                                |
| Port's<br>Default<br>Authority | Set PORT_PRI_EN to 1, and set port base register ING_PORT_PRIORITY (bits [19:28] in 0x108, 0x208, etc.).                                          |

When more than one priority enable bit is set to 1, bits [7:0] in 0x110, 0x210, etc. (DA\_PRI\_SEL, IP\_PRI\_SEL, VLAN\_PRI\_SEL, PORT\_PRI\_SEL) can determine the order in which the frame priority should be applied. If \*\_PRI\_SEL is set to 00, frame priority is determined by that first. Otherwise, priority is determined by which \*\_PRI\_SEL is set to 01, then 10, 11, etc.

On arrival, packets are directed into one of the four available priority queues based on:

- Priority bits in the header field
- The frame destination address (if in the ARL table with a defined priority with the priority bit is enabled)
- The frame VID (if in the VLAN table and the priority override is enabled)
- The 802.3 tag containing 802.1p priority information (if enabled on the port)
- The port's default priority as defined in the register

Each of the priority classification rules have enables so designers may use any combination; priority can be disabled or the order may be selected separately on a per-port basis. Congestion in the flow of packets for an extended period of time forces frames to drop without flow control. Higher priority flows receive a higher percentage of the open buffers, and this percentage is determined by the scheduling mode. Features such as back pressure and pause-frame control are implemented to supports zero packet loss during traffic congestion. The AR7241 ensures that all uncongested flows traverse the switch without degradation, regardless od congestion situations elsewhere in the switch.

QoS for the AR7241 may follow one of three priority schemes, either fixed, weighted fair, or a mixed mode scheme. In the fixed priority scheme, all egress packets leave the switch starting with the highest priority queue. Once that queue has been emptied, the next highest priority queue begins its packet dispersal until it has been emptied and so on. This method insures that all high priority packets will be sent out from the switch as soon as possible.

For the weighted fair scheme, packets are egressed from the chip in the order of 8, 4, 2, 1 packets for the four priorities queue of the AR7241. (eight packets egress from the highest priority queue, then four from the second highest queue, and so on). This method allows the highest priority to get its packets out first and the other remaining queues are not totally starved from egressing.

The mixed mode scheme mixes both the weighted fair and fixed schemes. The highest priority queue disperses its packets first until the queue has been emptied, and the remaining queues will follow the 4, 2, 1 weighted egress scheme as mentioned previously. This ensures that the highest priority queue will egress its packets as soon as possible, while the remaining queues equally disperse their packets without queue starvation.

## 2.12 Rate Limiting

The AR7241 supports port-based ingress and egress rate limiting. All frames may be limited but management frames and known multicast frames are the only types that can be selected by the user. The ingress limit rate may be set from zero to 1 Gbps in steps of 32 Kbps. The port base register is used to determine the limited bytes to count. The default setting for rate limiting is to include the frame's bytes from the beginning of the preamble to the end of the RCS with a added minimum IFG.

#### 2.13 Broadcast Storm Control

The AR7241 supports broadcast storm control. Some switch designs may require limiting the reception rate of frames. The types of frames to be limited can be selected separately on a perport basis. The maximum rate desired needs to be selected by the user and then programmed. Eleven different frame rates from 1k (2<sup>0</sup>K) to 2<sup>10</sup>K per second.

The statistics counter block maintains a set of forty MIB counters per port. These counters provide a set of Ethernet statistics for frames received on ingress and transmitted on egress. A register interface allows the CPU to capture, read, or clear the counter values.

The counters support:

- RMON MIB
- Ethernet-like MIB
- MIB II
- Bridge MIB
- RFC2819

The CPU interface supports:

- Autocast MIB counters after half-full
- Autocast MIB counters after time out
- Autocast MIB counters when requested
- Clearing all MIB counters

The MIB counters in the switch are for LAN's and CPU port. For WAN, the MIB counters are in GE1.

## 2.14 Switch Operation

Two tables embedded in the AR7241 aid in allocation of ingress packets, the ARL table and the VLAN table.

The address database is stored in the embedded SRAM and can store up to 1024 address entries. The default aging time for this table is 300 seconds. One address can be searched in the table and it may be used to get the next read out of the whole table. Entries in the table may be loaded and purged. All entries maybe be flushed, and this may be divided to flush just non-static entries, all entries per port or all non-static entries per port.

The VLAN table supports a single search, and it may be used to get the next read out of the whole table. Entries may be loaded or purged and entries may be flushed, either as a whole or per port.

## 2.15 Port Mirroring

Ingress, egress and destination address packets can be mirrored by the AR7241. To mirror the DA packets, the mirror enable bit must be set in the ARL table. To mirror a port, simply set the mirror port number.

Port mirroring is only among the LAN ports and not for WAN.

## 2.16 Port States

Table 2-10 shows the port states supported by the AR7241.

#### Table 2-10. Port States

| State                                                                                                   | Description                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Disabled                                                                                                | Frames are not allowed to enter or leave a disabled port. Learning does not take place on disabled ports.    |  |  |
| Blocking Only MGMP frames are allowed enter a blocked port. All other frames are discarded. Learning is |                                                                                                              |  |  |
| Listonina                                                                                               | disabled on blocked ports.                                                                                   |  |  |
| Listening                                                                                               | Only management frames may enter or leave a listening port. All other frame types are discarded. Learning is |  |  |
| Learning                                                                                                | disabled on listening ports.  Only management frames may enter                                               |  |  |
|                                                                                                         | or leave a learning port. All other frame types are discarded but learning occurs on all good frames,        |  |  |
| E                                                                                                       | including non-management frames.                                                                             |  |  |
| rorwarding                                                                                              | Normal operation. All frames may enter or leave a forwarding port.  Learning occurs on all good frames.      |  |  |



## 3. Audio Interface

#### 3.1 Overview

Figure 3-1 shows a block diagram of the AR7241 audio interface.

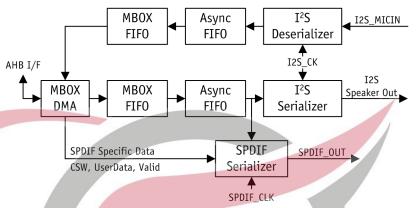



Figure 3-1. Audio Interface

The AR7241 includes an I<sup>2</sup>S speaker and microphone interface as well as an SPDIF speaker interface. The I<sup>2</sup>S and SPDIF clocks are generated by the audio PLL block.

#### 3.2 Audio PLL

Figure 3-2 shows the AR7241 audio PLL block diagram.

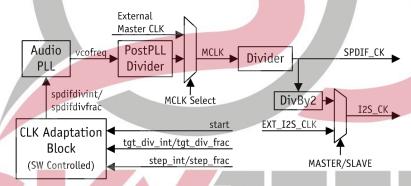



Figure 3-2. Audio PLL Block Diagram

The audio PLL can support generation of all the audio master clock frequencies. It accepts two inputs, SPDIFDIVINT and SPDIFDIVFRAC, which are generated by a clock adaptation module. The clock adaptation module enables slow changing of the audio clock by changing SPDIFDIVINT/ SPDIFDIVFRAC in small steps from the current value to a target value. The target TGT\_DIV\_INT/TGT\_DIV\_FRAC and step size are software programmable. The clock adaptation module changes the value of the SPDIFDIVINT/SPDIFDIVFRAC values with respect to a slow SPDIFCLKSDM clocks. This small step size ensures that the audio PLL tracks the small variation. The resolution of

DIVFRAC ensures that the clock can be varied with steps less than 200 ppb. Following the audio PLL come three dividers: postPLL divider and ExtDiv controlled through the register AUDIO\_PLL\_CONFIG, PostPLLDivide field, and another posedge divider inside the I<sup>2</sup>S STEREO\_CONFIG register. The final clock relations is:

(40 MHz/3) \* (int.frac) = vcofreq vcofreq/(PostPLLDiv \* ExtDiv) = MCLK MCLK/posedge = SPDIF\_CLK

If the master must be modified from the current value to another value, it is software's responsibility to recompute and program the new TGT\_DIV\_INT/TGT\_DIV\_FRAC values.

## 3.3 I<sup>2</sup>S Interface

The AR7241 I<sup>2</sup>S supports a two-channel digital audio subsystem. This interface uses the I<sup>2</sup>S pins listed in Table 1-2, "Signal-to-Pin Relationships and Descriptions," on page 8.

#### 3.3.1 External DAC

An external DAC receives I<sup>2</sup>S digital audio streams and converts them to analog output to drive speaker or headphones. This data stream is PCM data which is serialized and sent with a left channel/right channel select and synchronization signal. The I<sup>2</sup>S serializer can be programmed to support a few different variants of the I<sup>2</sup>S data format to be compatible with a larger number of external DAC components, including various PCM data word sizes, serialization boundaries, and clocking options.

I<sup>2</sup>S can also operate in a slave mode where the stereo clock and word select are driven by external master (DAC or external controller). External DAC parts are often controlled by a separate serial 2-wire or 3-wire interface. This interface often controls volume and configuration of the external DAC. This can be attached to the AR7241 serial interface controllers.

## 3.3.2 Sample Sizes and Rates

The stereo audio path supports PCM sample sizes of 8, 16, 24, or 32 bits for speaker out and PCM sample sizes of 16 and 32 bits for MICIN. The serializer supports serialization sizes of 16 or 32 bits. The sample size and serialization size need not be the same, LSBs will be padded with 0's. If the AR7241 is programmed to be a slave, word select and stereo clock (the bit clock) are inputs from the external DAC/ADC.

Along with configuration information, a sample counter provides the number of samples transmitted per second through the I<sup>2</sup>S SpeakerOut interface. This sample counter can be used and cleared by software as required.

## 3.3.3 Stereo Software Interface

To play music, software configures the stereo subsystem and sends interleaved (LRLR....) PCM data to the mailbox DMA. To record music, software configures the stereo subsystem and the PCM samples (interleaved) are written into the memory.

## To send data PCM samples on the I<sup>2</sup>S interface:

- 1. Configure other parameters. For example, sample size, word size, mono/ stereo mode, master/slave mode, clk divider (if the AR7241 is master), and so on.
- 2. Program GPIO\_FUNCTION register to enable I<sup>2</sup>S.
- 3. Program the STEREO\_CONFIG register to enable the stereo.
- 4. Issue a stereo reset.
- 5. Configure the DMA to send SpeakerOut from the AR7241.

## To receive data PCM samples:

- 1. Program the GPIO\_FUNCTION register to enable I<sup>2</sup>S.
- 2. Program STEREO\_CONFIG register to enable the stereo.
- 3. Issue a MICIN reset to reset Micin buffers.
- 4. Configure other parameters.
  For example, sample size, word size, mono/
  stereo mode, master/slave mode, clk
  divider (if the AR7241 is master), and so on.
- 5. Configure the DMA to receive PCM samples.

## 3.4 SPDIF INTERFACE

The AR7241 also includes a SPDIF interface for audio. The SPDIF interface only includes SPDIF\_OUT to the speakers. SPDIF\_IN is not supported in the AR7241.

The SPDIF interface operates on the same sample as I<sup>2</sup>S, so it always in sync with audio played on the I<sup>2</sup>S interface. All configuration information to the SPDIF block, such as the sampling frequency, sample size, word size, and so on, are inherited from the programming of the I<sup>2</sup>S interface. If only the SPDIF interface is required to operate and the I<sup>2</sup>S audio interface is not required, the programming still only needs to be done using I<sup>2</sup>S configuration registers. The I<sup>2</sup>S interface can be disabled using the GPIO function register.

The SPDIF specific data that forms part of each SPDIF audio subframe such as the valid, CSW, and user data are provided through the DMA descriptor directly to the SPDIF Module. The DMA controller describes how the data is provided through the descriptor.

## 3.5 MAILBOX (DMA CONTROLLER)

A MBOX DMA Controller is used in the AR7241 for I<sup>2</sup>S and SPDIF interface. The MBOX channel is a duplex channel that can operate simultaneously for Rx and Tx.

#### 3.5.1 Mailboxes

The AR7241 supports one duplex mailbox to move data between the DDR memory and audio interfaces I<sup>2</sup>S and SPDIF through the AHB interface. Flow control of the DMA must be managed by software.

## 3.5.2 MBOX DMA Operation

The AR7241 MBOX DMA engine has one channel for Tx and one channel for Rx. Each mailbox DMA channel follows a list of linked descriptors.

Table 3-1. Descriptor Fields

| Figure 3-3 and Tal | le 3-1 show the descriptor |
|--------------------|----------------------------|
| format and descri  | otion.                     |

| OWN          | EOM                     | Rsvd[4 | :0] | VUC          | Size[11:0] | Length[11:0] |  |
|--------------|-------------------------|--------|-----|--------------|------------|--------------|--|
| Rsvd[3:0]    |                         |        |     | BufPtr[27:0] |            |              |  |
| R            | Rsvd[3:0] NextPtr[27:0] |        |     |              |            | 7:0]         |  |
| VUC DWORD 1  |                         |        |     |              |            |              |  |
| VUC DWORD 2  |                         |        |     |              |            |              |  |
| : /          |                         |        |     |              |            |              |  |
| VUC DWORD 35 |                         |        |     |              |            |              |  |
|              | VUC DWORD 36            |        |     |              |            |              |  |

Figure 3-3. DMA Descriptor Structure

| Name                 | Bits         | Description                                                                                                                                                                                                                                                                                                                   |
|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length               | 12           | Length of data in memory buffer.  If EOM=0, the Length = Size.                                                                                                                                                                                                                                                                |
| Size                 | 12           | Size of memory buffer.                                                                                                                                                                                                                                                                                                        |
| VUC                  | 1            | When this bit set, the SPDIF block uses the VUC data for the audio block fetched from the previous descriptor.                                                                                                                                                                                                                |
| EOM                  | 1            | End of message indicator.                                                                                                                                                                                                                                                                                                     |
| OWN                  | 1            | Descriptor is owned by the CPU or DMA engine. (If set, it is owned by the DMA engine).                                                                                                                                                                                                                                        |
| BufPtr               | 28           | Points to memory buffer pointer. Byte aligned address.                                                                                                                                                                                                                                                                        |
| NextPtr              | 28           | Points to next descriptor in the list. Must be word aligned.                                                                                                                                                                                                                                                                  |
| VUC<br>DWORD 1 to 36 | 36 * 32 bits | These are the VUC data for each audio block of the SPDIF.  192 Bits each of Valid, UserData and Channel Status Word for two channels of audio corresponds to 36 Dwords. These data are SPDIF specific and software does not need to provide this data if I <sup>2</sup> S is the only active interface and SPDIF is disabled. |
|                      |              | ELECTRONIC                                                                                                                                                                                                                                                                                                                    |

Once the DMA engine is started, it will follow its descriptor chain until it arrives at a descriptor that has its owner bit set to CPU (bit [31] of the status word is not set). The DMA engine then stops until the CPU restarts it.

The DMA control registers include stop and start commands, a programmable descriptor chain base address, DMA policies to use, and so on. DMA status registers inform the CPU when the engine is running, done, or encountered an error.

#### 3.5.3 Software Flow Control

## To configure the MBOX channel to send data from the AR7241 (Rx as referred in MBOX):

- 1. Set up the MBOX Rx descriptors. The owner should be set to indicate it is owned by the DMA controller. Hardware resets this once DMA is complete.
- Load the corresponding buffers with the data to transmit.
- Program the register MBOX\_DMA\_TX\_DESCRIPTOR\_BASE\_A DDRESS with the base descriptor address.
- 4. Reset the corresponding MBOX FIFO.
- Enable the DMA by setting the START bit in the MBOX\_DMA\_RX\_CONTROL register. This register has a provision to stop and resume at any time.
- On DMA completion, the RX\_DMA\_COMPLETE interrupt is asserted.

# To configure the MBOX channel for the AR7241 to receive data (Tx as referred in MBOX):

- 1. Set up the MBOX Tx descriptors. The owner should be set to indicate it is owned by the DMA controller. Hardware resets this once DMA is complete.
- Program the register MBOX\_DMA\_TX\_DESCRIPTOR\_BASE\_A DDRESS with the base descriptor address.
- 3. Reset the corresponding MBOX FIFO.
- Enable the DMA by setting START bit in MBOX\_DMA\_TX\_CONTROL register. This register has a provision to stop and resume at any time.
- 5. On DMA completion, the TX\_DMA\_COMPLETE interrupt is asserted.

#### 3.5.4 Mailbox Error Conditions

If flow control synchronization is lost for any reason, these mailbox error conditions could arise:

#### Tx Mailbox Overflow

If no DMA descriptors are available on the AR7241 Tx side, but an message is coming in from the corresponding interface, the Tx mailbox stalls the host physical interface.

If the host interface remains stalled with the Tx FIFO full for a timeout period specified other than FIFO\_TIMEOUT, a timeout error occurs. An interrupt is sent to CPU. As long as the host status overflow bit is set, any mailbox Tx bytes that arrive from the host when the mailbox is full are discarded. When the host clears the overflow interrupt, mailbox FIFOs return to normal operation. Software must then either resynchronize flow control state or reset the AR7241 to recover.

#### Rx Mailbox Underflow

If I<sup>2</sup>S reads a mailbox that does not contain any data and this condition persists for more than a timeout period, the CPU is sent an underflow error interrupt. As long as status underflow bit is set, any mailbox reads which arrive when the mailbox is empty return garbage data. Software must then either resynchronize flow control state or reset the AR7241 to recover.

### 3.5.5 MBOX-Specific Interrupts

All MBOX specific interrupts can be masked by control registers (MBOX\_INT\_ENABLE).

MBOX sends an interrupt to MIPS in these cases (if they are enabled):

- Tx DMA complete, Rx DMA complete
- Tx overflow, Tx not empty (incoming traffic)
- Rx underflow, Rx not full (outgoing traffic)

The status of these interrupts can be read from the MBOX\_INT\_STATUS register.

## 4. Electrical Characteristics

## 4.1 Absolute Maximum Ratings

Table 4-1 summarizes the absolute maximum ratings and Table 4-2 lists the recommended operating conditions for the AR7241.

Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 4-1. Absolute Maximum Ratings

| Symbol            | Parameter                         | Max Rating  | Unit |
|-------------------|-----------------------------------|-------------|------|
| V <sub>dd12</sub> | Supply voltage                    | -0.3 to 1.8 | V    |
| V <sub>dd25</sub> | Maximum I/O supply voltage        | -0.3 to 4.0 | V    |
| $T_{ m store}$    | Storage temperature               | -65 to 150  | °C   |
| T <sub>j</sub>    | Junction temperature              | TBD         | °C   |
| ESD               | Electrostatic discharge tolerance | 2000        | V    |

## 4.2 Recommended Operating Conditions

Table 4-2. Recommended Operating Conditions

| Symbol               | Parameter                                               | Conditions | Min  | Тур  | Max  | Unit |
|----------------------|---------------------------------------------------------|------------|------|------|------|------|
| $V_{\mathrm{DD33}}$  | Supply Voltage                                          | ±10%       | 2.97 | 3.3  | 3.63 | V    |
| $V_{\mathrm{DD25}}$  | I/O Supply Voltage <sup>[1]</sup>                       | ±5%        | 2.49 | 2.62 | 2.75 | V    |
| $V_{\mathrm{DD12}}$  | Core Voltage <sup>[1]</sup>                             | ±5%        | 1.14 | 1.2  | 1.26 | V    |
| V <sub>DD12CD</sub>  | Core Voltage for CPU/DDR <sup>[1]</sup>                 | ±5%        | 1.22 | 1.28 | 1.34 | V    |
| $AV_{\mathrm{DD20}}$ | Voltage for Ethernet PHY <sup>[1]</sup>                 | -          | 1.9  | 2.0  | 2.15 | V    |
| V <sub>DD_DDR</sub>  | DDR1 I/O Voltage <sup>[1]</sup>                         | ±5%        | 2.47 | 2.6  | 2.73 | V    |
|                      | DDR2 I/O Voltage <sup>[1]</sup>                         | ±5%        | 1.71 | 1.8  | 1.89 | 1.71 |
| D <sub>DR_VREF</sub> | DDR1 Reference Level for SSTL<br>Signals <sup>[2]</sup> | _          | 1.24 | 1.3  | 1.37 | V    |
|                      | DDR2 Reference Level for SSTL<br>Signals <sup>[2]</sup> | _          | 0.86 | 0.9  | 0.95 | V    |
| T <sub>case</sub>    | Case Temperature                                        | _          | _    | _    | TBD  | °C   |
| Psi <sub>JT</sub>    | Thermal Parameter <sup>[3]</sup>                        | _          | _    | _    | 3.1  | °C/W |

<sup>[1]</sup> Voltage regulated internally by the AR7241

<sup>[2]</sup>Divide VDD\_DDR voltage by two externally, see reference design schematic

<sup>[3]</sup> The thermal parameter is for the 14x14 mm LQFP package.

## 4.3 General DC Electrical Characteristics

Table 4-3 lists the general DC electrical characteristics.

These conditions apply to all I/O DC characteristics unless otherwise specified:

 $T_{amb}$  = 25 °C,  $V_{DD25}$  = 2.62 V

**Table 4-3. General DC Electrical Characteristics** 

| Symbol          | Parameter                                    | Conditions            | Min  | Тур | Max | Unit |
|-----------------|----------------------------------------------|-----------------------|------|-----|-----|------|
| V <sub>IH</sub> | High Level Input Voltage                     |                       | 2.0  | -   | 2.8 | V    |
| $V_{\rm IL}$    | Low Level Input Voltage                      | _                     | -0.3 | -7  | 0.4 | V    |
| I <sub>IL</sub> | Input Leakage Current                        | With pull down        | _    | 26  | _   | μΑ   |
| V <sub>OH</sub> | High Level Output Voltage                    | $I_0 = 1 \text{ mA}$  | 2.2  | 7   | 2.8 | V    |
| V <sub>OL</sub> | Low Level Output Voltage                     | $I_0 = 1 \text{ mA}$  | 0    | -   | 0.4 | V    |
| I <sub>O</sub>  | Output Current                               | $V_0 = 0$ to $V_{dd}$ | _ \  | 1   | _   | mA   |
|                 | GPO_13 to GPO_17 when used as LED_0 to LED_4 | $V_0 = 0$ to $V_{dd}$ | _    | 10  | _   | mA   |
| $C_{IN}$        | Input Capacitance                            |                       |      | 3   |     | pF   |

Table 4-4 lists the DDR1 DC electrical characteristics:

 $T_{amb} = 25 \, ^{\circ}\text{C}, \, V_{DD\_DDR} = 2.6 \, \text{V}$ 

Table 4-4. DDR1 Interface DC Electrical Characteristics

| Symbol          | Parameter                 | Conditions           | Min  | Тур | Max  | Unit |
|-----------------|---------------------------|----------------------|------|-----|------|------|
| V <sub>IH</sub> | High Level Input Voltage  |                      | 1.48 | _   | 2.9  | V    |
| $V_{\rm IL}$    | Low Level Input Voltage   |                      | -0.3 | -   | 1.12 | V    |
| V <sub>OH</sub> | High Level Output Voltage | $I_0 = 1 \text{ mA}$ | 2.2  | _   | 2.8  | V    |
| V <sub>OL</sub> | Low Level Output Voltage  | $I_o = 1 \text{ mA}$ | -0.3 | D A | 0.4  | V    |

Table 4-5 lists the DDR2 DC electrical characteristics:

 $T_{amb} = 25$  °C,  $V_{DD\_DDR} = 1.8$  V

Table 4-5. DDR2 Interface DC Electrical Characteristics

| Symbol          | Parameter                 | Conditions           | Min  | Тур | Max | Unit |
|-----------------|---------------------------|----------------------|------|-----|-----|------|
| $V_{IH}$        | High Level Input Voltage  | _                    | 1.1  | _   | 2.2 | V    |
| $V_{ m IL}$     | Low Level Input Voltage   | _                    | -0.3 | _   | 0.8 | V    |
| V <sub>OH</sub> | High Level Output Voltage | $I_0 = 1 \text{ mA}$ | 1.6  | _   | 2.2 | V    |
| $V_{OL}$        | Low Level Output Voltage  | $I_0 = 1 \text{ mA}$ | -0.3 |     | 0.4 | V    |

Table 4-6 lists the EJTAG and LDO DC electrical characteristics:

 $T_{amb} = 25$  °C,  $V_{DD25} = 2.62$  V

Table 4-6. EJTAG and LDO DC Electrical Characteristics

| Symbol                 | Parameter                                                      | Conditions   | Min  | Тур | Max | Unit |
|------------------------|----------------------------------------------------------------|--------------|------|-----|-----|------|
| $V_{IH}$               | High Level Input Voltage (EJTAG_SEL, TRST_L, TCK, LDO_DDR_SEL) | _            | 2    |     | 3.6 | V    |
| $V_{IL}$               | Low Level Input Voltage (EJTAG_SEL, TRST_L, TCK, LDO_DDR_SEL)  | <b>/</b> - / | -0.3 | _   | 0.4 | V    |
| $V_{IH}$               | High Level Input Voltage (TMS, TDI)                            | -/           | 2    | _   | 2.8 | V    |
| $\overline{V_{ m IL}}$ | Low Level Input Voltage (TMS, TDI)                             | -/-          | -0.3 | _   | 0.4 | V    |
| V <sub>OH</sub>        | High Level Output Voltage (TDO)                                |              | 2.2  |     | 2.8 | V    |
| V <sub>OL</sub>        | Low Level Output Voltage (TDO)                                 |              | 0    |     | 0.4 | V    |



## 4.4 40 MHz Clock Characteristics

The 40 MHz reference clock can be AC coupled sine wave or square wave. An external 100 pF capacitor should connect between REFCLKIN and the clock source. See Table 4-7 and Table 4-8 for more information.

**Table 4-7.** 40 MHz Clock Sine Wave Characteristics

| Symbol            | Parameter              | Conditions | Min | Тур | Max | Unit |
|-------------------|------------------------|------------|-----|-----|-----|------|
| V <sub>Ampl</sub> | Peak-to-Peak Amplitude | _          | 0.6 | _   | 1.4 | V    |

Table 4-8. 40 MHz Clock SquareWave Characteristics

| Symb <mark>ol</mark> | Parameter              | Conditions | Min | Тур | Max | Unit |
|----------------------|------------------------|------------|-----|-----|-----|------|
| $V_{Ampl}$           | Peak-to-Peak Amplitude | _          | 0.6 |     | 1.2 | V    |
| T <sub>DCycle</sub>  | Duty Cycle             | _          | 40  | 50  | 60  | %    |
| T <sub>Rise</sub>    | Rise Time              |            | _   | _   | 3   | ns   |
| $T_{\mathrm{Fall}}$  | Fall Time              | -          |     | _   | 3   | ns   |



## 4.5 Power Consumption

Primary voltage supply of the AR7241 is provided by the VDD33, pins 71 and 117. The VDD33 is regulated by the internal LDOs to supply power to the external DDR memory, and magnetics of the Ethernet ports.

Figure 4-1 depicts the AR7241 power consumption. Refer to the reference design schematics for details. Table 4-9 shows the typical power consumption for the AR7241 with internal 5-port Ethernet Switch, PCIE interface in operating mode.

**Table 4-9. Power Consumption** 

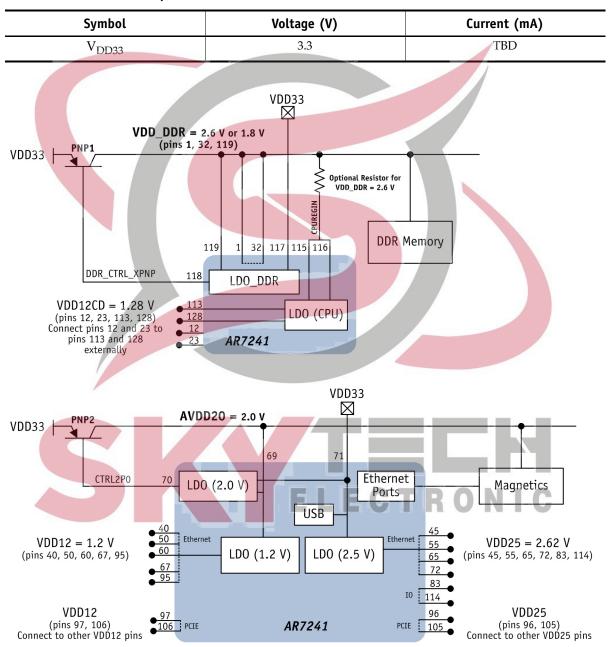



Figure 4-1. Output Voltages Regulated by the AR7241



## 5. Package Dimensions

The AR7241 14 mm x 14 mm LQFP-128 package drawings and dimensions are provided in Figure 5-1, Table 5-1, and Table 5-2.

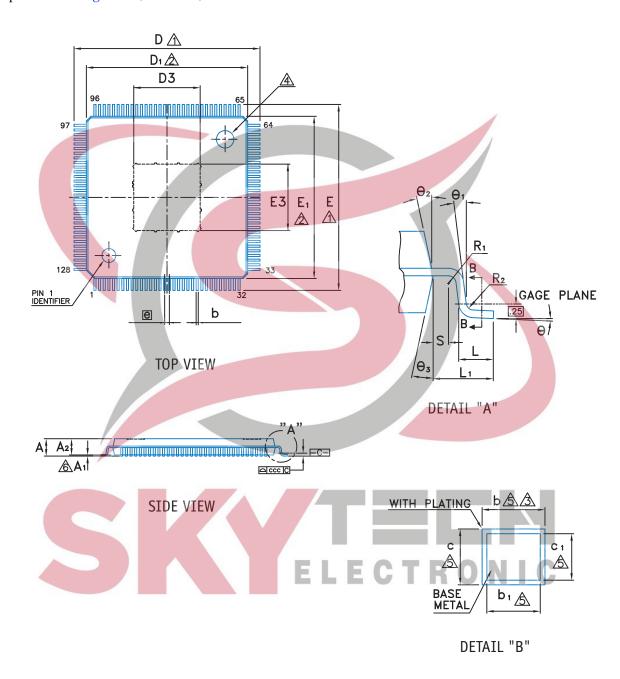



Figure 5-1. Package Details

**Table 5-1. Package Dimensions** 

| Dimension Label | Min   | Nom      | Max   | Unit | Min   | Nom       | Max   | Unit   |
|-----------------|-------|----------|-------|------|-------|-----------|-------|--------|
| A               | _     | _        | 1.60  | mm   | _     | _         | 0.063 | inches |
| A1              | 0.05  | _        | _     | mm   | 0.002 | _         | _     | inches |
| A2              | 1.35  | 1.40     | 1.45  | mm   | 0.053 | 0.055     | 0.057 | inches |
| b               | 0.13  | 0.18     | 0.23  | mm   | 0.005 | 0.007     | 0.009 | inches |
| b1              | 0.13  | 0.16     | 0.19  | mm   | 0.005 | 0.006     | 0.007 | inches |
| С               | 0.09  | _        | 0.20  | mm   | 0.004 | _         | 0.008 | inches |
| c1              | 0.09  | _        | 0.16  | mm   | 0.004 | _         | 0.006 | inches |
| D               | 15.85 | 16.00    | 16.15 | mm   | 0.624 | 0.630     | 0.636 | inches |
| D1              | 13.90 | 14.00    | 14.10 | mm   | 0.547 | 0.551     | 0.555 | inches |
| Е               | 15.85 | 16.00    | 16.15 | mm   | 0.624 | 0.630     | 0.636 | inches |
| E1              | 13.90 | 14.00    | 14.10 | mm   | 0.547 | 0.551     | 0.555 | inches |
| e               |       | 0.40 BSC |       | mm   |       | 0.016 BSC |       | inches |
| L               | 0.45  | 0.60     | 0.75  | mm   | 0.018 | 0.024     | 0.030 | inches |
| L1              |       | 1.00 REF |       | mm   |       | 0.039 REF |       | inches |
| R1              | 0.08  |          | _     | mm   | 0.003 | _         | 7     | inches |
| R2              | 0.08  | _        | 0.20  | mm   | 0.003 | / – /     | 0.008 | inches |
| S               | 0.20  | _        | _     | mm   | 0.008 | /-/       | _     | inches |
| θ               | 0     | 3.5      | 7     | 0    | 0     | 3.5       | 7     | 0      |
| θ1              | 0     |          | _     | 0    | 0     | /-        |       | 0      |
| θ2/θ3           |       | 12°      | ТҮР   |      |       | 12°       | ГҮР   | 7      |
| ссс             |       | 0.08     |       | mm   |       | 0.003     |       | inches |

<sup>[1]</sup> To be determined at seating plane C.

[9] Special characteristics C class: ccc.

Table 5-2. Exposed Pad Size

| L/F   | Dimension     | Unit | Dimension       | Unit   |
|-------|---------------|------|-----------------|--------|
| D3/E3 | 5.72/5.46 REF | mm   | 0.225/0.215 REF | inches |

<sup>[2]</sup> Dimensions D1 and E1 do not include mold protrusion. D1 and E1 are maximum plastic body size dimensions including mold mismatch.

<sup>[3]</sup> Dimension b does not include dambar protrusion. Dambar cannot be located on the lower radius of the foot.

<sup>[4]</sup> Exact shape of each corner is optional.

<sup>[5]</sup> These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.

<sup>[6]</sup> A1 is defined as the distance from the seating plane to the lowest point of the package body.

<sup>[7]</sup> Controlling dimension: Millimeters

<sup>[8]</sup> Reference document: JEDEC MS-026.

## 6. Ordering Information

The order number AR7241-AH1A specifies a LQFP halogen-free standard-temperature version of the AR7241.





The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: 981-00097-001 MKG-1154 Rev. 1



## Atheros Communications, Incorporated

5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com